Time limit: 50 minutes.
Instructions: This test contains 10 short answer questions. All answers must be expressed in simplest form unless specified otherwise.
No calculators.

1. There exists a unique real value of x such that

$$
(x+\sqrt{x})^{2}=16 .
$$

Compute x.
2. Compute the number of values of x in the interval $[-11 \pi,-2 \pi]$ that satisfy $\frac{5 \cos (x)+4}{5 \sin (x)+3}=0$.
3. Nathan has discovered a new way to construct chocolate bars, but it's expensive! He starts with a single 1×1 square of chocolate and then adds more rows and columns from there. If his current bar has dimensions $w \times h$ (w columns and h rows), then it costs w^{2} dollars to add another row and h^{2} dollars to add another column. What is the minimum cost to get his chocolate bar to size 20×20 ?
4. If the sum of the real roots x to each of the equations

$$
2^{2 x}-2^{x+1}+1-\frac{1}{k^{2}}=0
$$

for $k=2,3, \ldots, 2023$ is N, what is 2^{N} ?
5. Suppose $\alpha, \beta, \gamma \in\{-2,3\}$ are chosen such that

$$
M=\max _{x \in \mathbb{R}} \min _{y \in \mathbb{R} \geq 0} \alpha x+\beta y+\gamma x y
$$

is finite and positive (note: $\mathbb{R}_{\geq 0}$ is the set of nonnegative real numbers). What is the sum of the possible values of M ?
6. What is the area of the figure in the complex plane enclosed by the origin and the set of all points $\frac{1}{z}$ such that $(1-2 i) z+(-2 i-1) \bar{z}=6 i$?
7. Consider a sequence $F_{0}=2, F_{1}=3$ that has the property $F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n} \cdot 2$. If each term of the sequence can be written in the form $a \cdot r_{1}^{n}+b \cdot r_{2}^{n}$, what is the positive difference between r_{1} and r_{2} ?
8. If x and y are real numbers, compute the minimum possible value of

$$
\frac{4 x y\left(3 x^{2}+10 x y+6 y^{2}\right)}{x^{4}+4 y^{4}} .
$$

9. Let x, y, z be nonzero numbers, not necessarily real, such that

$$
(x-y)^{2}+(y-z)^{2}+(z-x)^{2}=24 y z
$$

and

$$
\frac{x^{2}}{y z}+\frac{y^{2}}{z x}+\frac{z^{2}}{x y}=3 .
$$

Compute $\frac{x^{2}}{y z}$.
10. Suppose that $p(x), q(x)$ are monic polynomials with nonnegative integer coefficients such that

$$
\frac{1}{5 x} \geq \frac{1}{q(x)}-\frac{1}{p(x)} \geq \frac{1}{3 x^{2}}
$$

for all integers $x \geq 2$. Compute the minimum possible value of $p(1) \cdot q(1)$.

