Time limit: 50 minutes.

Instructions: This test contains 10 short answer questions. All answers must be expressed in simplest form unless specified otherwise.

No calculators.

1. There exists a unique real value of x such that

$$(x + \sqrt{x})^2 = 16$$

Compute x.

- 2. Compute the number of values of x in the interval $[-11\pi, -2\pi]$ that satisfy $\frac{5\cos(x)+4}{5\sin(x)+3} = 0$.
- 3. Nathan has discovered a new way to construct chocolate bars, but it's expensive! He starts with a single 1×1 square of chocolate and then adds more rows and columns from there. If his current bar has dimensions $w \times h$ (w columns and h rows), then it costs w^2 dollars to add another row and h^2 dollars to add another column. What is the minimum cost to get his chocolate bar to size 20×20 ?
- 4. If the sum of the real roots x to each of the equations

$$2^{2x} - 2^{x+1} + 1 - \frac{1}{k^2} = 0$$

for $k = 2, 3, \dots, 2023$ is N, what is 2^N ?

5. Suppose $\alpha, \beta, \gamma \in \{-2, 3\}$ are chosen such that

$$M = \max_{x \in \mathbb{R}} \min_{y \in \mathbb{R}_{\geq 0}} \alpha x + \beta y + \gamma x y$$

is finite and positive (note: $\mathbb{R}_{\geq 0}$ is the set of nonnegative real numbers). What is the sum of the possible values of M?

- 6. What is the area of the figure in the complex plane enclosed by the origin and the set of all points $\frac{1}{z}$ such that $(1-2i)z + (-2i-1)\overline{z} = 6i$?
- 7. Consider a sequence $F_0 = 2$, $F_1 = 3$ that has the property $F_{n+1}F_{n-1} F_n^2 = (-1)^n \cdot 2$. If each term of the sequence can be written in the form $a \cdot r_1^n + b \cdot r_2^n$, what is the positive difference between r_1 and r_2 ?
- 8. If x and y are real numbers, compute the minimum possible value of

$$\frac{4xy(3x^2+10xy+6y^2)}{x^4+4y^4}.$$

9. Let x, y, z be nonzero numbers, not necessarily real, such that

$$(x-y)^{2} + (y-z)^{2} + (z-x)^{2} = 24yz$$

and

$$\frac{x^2}{yz} + \frac{y^2}{zx} + \frac{z^2}{xy} = 3$$

Compute $\frac{x^2}{yz}$.

10. Suppose that p(x), q(x) are monic polynomials with nonnegative integer coefficients such that

$$\frac{1}{5x} \ge \frac{1}{q(x)} - \frac{1}{p(x)} \ge \frac{1}{3x^2}$$

for all integers $x \ge 2$. Compute the minimum possible value of $p(1) \cdot q(1)$.