1. There exists a unique real value of x such that

$$
(x+\sqrt{x})^{2}=16 .
$$

Compute x.
Answer: $\frac{9-\sqrt{17}}{2}$
Solution: In order for \sqrt{x} to be defined, $x \geq 0$. Then $x+\sqrt{x} \geq 0$ and $x+\sqrt{x}=4$. Letting $y=\sqrt{x}$, we get $y^{2}+y-4=0$ which by the quadratic formula has solutions $\frac{-1 \pm \sqrt{17}}{2}$. As $y=\sqrt{x} \geq 0$, it follows that $y=\frac{-1+\sqrt{17}}{2}$ and

$$
x=y^{2}=\frac{18-2 \sqrt{17}}{4}=\frac{9-\sqrt{17}}{2} .
$$

2. Compute the number of values of x in the interval $[-11 \pi,-2 \pi]$ that satisfy $\frac{5 \cos (x)+4}{5 \sin (x)+3}=0$.

Answer: 4
Solution: The fraction is equal to zero when its numerator is equal to zero and its denominator is not equal to zero. The solutions to $5 \cos (x)+4=0$ are of the form $x= \pm \arccos (-4 / 5)+2 \pi k$ for integer k. The solutions to $5 \sin (x)+3=0$ are of the form $x= \pm \arcsin (-3 / 5)+2 \pi k$ for integer k. We see that every interval of the form $[2 k \pi,(2 k+1) \pi]$ has one solution to the given equation and intervals of the form $[(2 k+1) \pi,(2 k+2) \pi]$ have no solutions. Thus, there are 4 solutions in the interval $[-11 \pi,-2 \pi]$.
3. Nathan has discovered a new way to construct chocolate bars, but it's expensive! He starts with a single 1×1 square of chocolate and then adds more rows and columns from there. If his current bar has dimensions $w \times h$ (w columns and h rows), then it costs w^{2} dollars to add another row and h^{2} dollars to add another column. What is the minimum cost to get his chocolate bar to size 20×20 ?
Answer: 5339
Solution: The optimal way to add rows and columns to the 1×1 chocolate to the 20×20 chocolate is to alternate adding rows and columns. (A rough proof of this is below.) If we do this, then the costs are 1^{2} for the first row, plus 2^{2} for the first column, plus 2^{2} for the second row, plus $3^{2}+3^{2}+4^{2}+\cdots$. The formula for the overall cost to get to $n \times n$ is $1^{2}+$ $2 \cdot 2^{2}+2 \cdot 3^{2}+\cdots+2 \cdot(n-1)^{2}+n^{2}$. The sum of the first n squares can be calculated as $\frac{n(n+1)(2 n+1)}{6}$. Thus, we can simplify our desired sum to $\frac{n(n+1)(2 n+1)}{3}-1-n^{2}$. For $n=20$ this equals $\frac{20 \cdot 21 \cdot 41}{3}-1-20^{2}=5339$.
Proof: Assume $w>h$ (more columns than rows). Adding a column and then a row costs $h^{2}+(w+1)^{2}$. Adding a row and then a column costs $w^{2}+(h+1)^{2}$. Since $w>h$, we have $h^{2}+(w+1)^{2}=h^{2}+w^{2}+2 w+1>h^{2}+w^{2}+2 h+1=w^{2}+(h+1)^{2}$. Therefore, it's always more optimal to add a row first in this case. We can see that alternating rows and columns is optimal.
4. If the sum of the real roots x to each of the equations

$$
2^{2 x}-2^{x+1}+1-\frac{1}{k^{2}}=0
$$

for $k=2,3, \ldots, 2023$ is N, what is 2^{N} ?

Answer: $\frac{1012}{2023}$
Solution: Define $y=2^{x}$. Then, we can define the quadratic as $y^{2}-2 y+1-\frac{1}{k^{2}}$. Through quadratic formula or inspection, we notice that this quadratic can be factored as $\left(y-\left(1-\frac{1}{k}\right)\right)(y-$ $\left.\left(1+\frac{1}{k}\right)\right)$. Hence, $y=1 \pm \frac{1}{k}$. Thus, $2^{x}=1 \pm \frac{1}{k} \rightarrow x=\log _{2}\left(1 \pm \frac{1}{k}\right)$.
Note that the sum of the two solutions to a single equation is $\log _{2}\left(1-\frac{1}{k^{2}}\right)=\log _{2}\left(\frac{k^{2}-1}{k^{2}}\right)=$ $\log _{2}\left(\frac{(k-1)(k+1)}{k^{2}}\right)$. The sum of all solutions to the equations is then

$$
\begin{aligned}
N & =\log _{2}\left(\frac{1 \cdot 3}{2^{2}}\right)+\log _{2}\left(\frac{2 \cdot 4}{3^{2}}\right)+\ldots+\log _{2}\left(\frac{2022 \cdot 2024}{2023^{2}}\right) \\
& =\log _{2}\left(\frac{1 \cdot 3}{2^{2}} \cdot \frac{2 \cdot 4}{3^{2}} \cdot \ldots \cdot \frac{2022 \cdot 2024}{2023^{2}}\right) \\
& =\log _{2}\left(\frac{1 \cdot 2024}{2 \cdot 2023}\right) \\
& =\log _{2}\left(\frac{1012}{2023}\right) .
\end{aligned}
$$

We have $2^{N}=\frac{1012}{2023}$.
5. Suppose $\alpha, \beta, \gamma \in\{-2,3\}$ are chosen such that

$$
M=\max _{x \in \mathbb{R}} \min _{y \in \mathbb{R} \geq 0} \alpha x+\beta y+\gamma x y
$$

is finite and positive (note: $\mathbb{R}_{\geq 0}$ is the set of nonnegative real numbers). What is the sum of the possible values of M ?
Answer: $\frac{13}{2}$
Solution: We have

$$
\max _{x \in \mathbb{R}} \min _{y \in \mathbb{R} \geq 0} \alpha x+\beta y+\gamma x y=\max _{x \in \mathbb{R}} \min _{y \in \mathbb{R} \geq 0} \alpha x+y(\beta+\gamma x)
$$

Note that if $\beta+\gamma x<0$, then by increasing y, the minimum could be arbitrarily small, so to maximize the value, it is never a good strategy to pick such an x. Thus, we will choose x such that $\beta+\gamma x \geq 0$, and this forces $y=0$ as the best choice for y. This gives us

$$
\max _{x \in \mathbb{R}} \min _{y \in \mathbb{R} \geq 0} \alpha x+y(\beta+\gamma x)=\max _{x \in \mathbb{R}, \beta+\gamma x \geq 0} \alpha x .
$$

The constraint $\beta+\gamma x \geq 0$ is equivalent to $\gamma x \geq-\beta$. Note that α and γ must not have the same sign, as otherwise by making x very large with the same sign as α and γ, we can satisfy the constraint and cause the value of αx to diverge.
In order for M to be positive, α and x must have the same sign. Then, γx is 0 or a negative value. From the constraint $\gamma x \geq-\beta$., we see that we must have $\beta \geq 0$, i.e. $\beta=3$. The maximum possible value of x that satisfies the constraint is $-\frac{\beta}{\gamma}$, which gives us

$$
\max _{x \in \mathbb{R}, \beta+\gamma x \geq 0} \alpha x=-\frac{\alpha \beta}{\gamma} .
$$

The possible values of α / γ are $-2 / 3$ and $-3 / 2$. Therefore, the possible values of M are 2 or $9 / 2$, whose sum is $13 / 2$.
6. What is the area of the figure in the complex plane enclosed by the origin and the set of all points $\frac{1}{z}$ such that $(1-2 i) z+(-2 i-1) \bar{z}=6 i$?
Answer: $\frac{5 \pi}{36}$
Solution 1: We can rewrite $(1-2 i) z+(-2 i-1) \bar{z}=6 i$ as $\frac{z-\bar{z}}{2 i}=z+\bar{z}+3$. If we let $z=x+y i$, this is equivalent to the equation $y=2 x+3$. Suppose that a point $u=\frac{1}{z}$ where $(1-2 i) z+(-2 i-1) \bar{z}=6 i$. Let $u=v+w i$. Then, $z=\frac{1}{u}=\frac{v}{v^{2}+w^{2}}-\frac{w}{v^{2}+w^{2}} i$ and we must also have

$$
-\frac{w}{v^{2}+w^{2}}=2 \frac{v}{v^{2}+w^{2}}+3 .
$$

This can be rewritten as

$$
\left(v+\frac{1}{3}\right)^{2}+\left(w+\frac{1}{6}\right)^{2}=\frac{5}{36} .
$$

Note that we cannot allow $v^{2}+w^{2}=0$ but the origin is still included in the set of points we consider given the problem statement. The area of the circle described by this equation is $\frac{5 \pi}{36}$.
Solution 2: Alternatively, one can note that the resulting set of points is the inversion of the line $y=-2 x-3$ with respect to the unit circle. The perpendicular line passing through the origin, $y=\frac{x}{2}$, intersects $y=-2 x-3$ at $-\frac{6}{5}-\frac{3}{5} i$, which has a magnitude of $\frac{3}{\sqrt{5}}$, so its inversion in the unit circle has a magnitude of $\frac{\sqrt{5}}{3}$. This is the diameter of the resulting circle, so we get an area of $\frac{5 \pi}{36}$.
Solution 3: To obtain a different inversive solution, let $w=(1-2 i) z$. Then, $w-\bar{w}=6 i$ so the set of all feasible w is parametrized by the line $x+3 i$. Hence, $\frac{1}{w}$ describes a circle centered at $\frac{1}{6} i$ and of radius $\frac{1}{6}$. The area encompassed by this circle is $\frac{\pi}{36}$. However, since $|w|^{2}=\frac{1}{5}|z|^{2}$ as $|1-2 i|^{2}=5$, it follows that the area encompassed by $\frac{1}{z}$ is precisely 5 times that of $\frac{1}{w}$. This once more gives $\frac{5 \pi}{36}$.
7. Consider a sequence $F_{0}=2, F_{1}=3$ that has the property $F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n} \cdot 2$. If each term of the sequence can be written in the form $a \cdot r_{1}^{n}+b \cdot r_{2}^{n}$, what is the positive difference between r_{1} and r_{2} ?
Answer: $\frac{\sqrt{17}}{2}$
Solution: Listing out the first few terms of the sequence, we have $F_{0}=2, F_{1}=3, F_{2}=\frac{7}{2}, F_{3}=$ $\frac{19}{4}, F_{4}=\frac{47}{8}$. Note that the terms of the sequence satisfy the recursive relation $F_{n+1}=\frac{F_{n}}{2}+F_{n-1}$. We will prove this inductively. Suppose that we already know that the property given in the problem and the recursive relation are satisfied for all F_{n} with $n \leq k$. Then, we want to show that if $F_{k+1}=\frac{F_{k}}{2}+F_{k-1}$ then $F_{k+1} F_{k-1}-F_{k}^{2}=(-1)^{k} \cdot 2$. We have $F_{k+1} F_{k-1}-F_{k}^{2}=\frac{F_{k} F_{k-1}}{2}+F_{k-1}^{2}-F_{k}^{2}$. Note that $F_{k} F_{k-2}-F_{k-1}^{2}=(-1)^{n-1} \cdot 2 \Rightarrow F_{k-1}^{2}=F_{k} F_{k-2}+(-1)^{n} \cdot 2$. So,

$$
\begin{aligned}
\frac{F_{k} F_{k-1}}{2}+F_{k-1}^{2}-F_{k}^{2} & =\frac{F_{k} F_{k-1}}{2}+F_{k} F_{k-2}+(-1)^{n} \cdot 2-F_{k}^{2} \\
& =F_{k}\left(\frac{F_{k-1}}{2}+F_{k-2}-F_{k}\right)+(-1)^{n} \cdot 2 \\
& =F_{k} \cdot 0+(-1)^{n} \cdot 2
\end{aligned}
$$

which proves our claim. Now we know that the characteristic equation of the recurrence is $x^{2}=\frac{x}{2}+1$, and solving for x we get $x=\frac{1 \pm \sqrt{17}}{4}$. These are the values of r_{1} and r_{2}, so their positive difference is $\frac{\sqrt{17}}{2}$.
8. If x and y are real numbers, compute the minimum possible value of

$$
\frac{4 x y\left(3 x^{2}+10 x y+6 y^{2}\right)}{x^{4}+4 y^{4}} .
$$

Answer: - 1
Solution: Note that $x^{4}+4 y^{4}=\left(x^{2}+2 y^{2}+2 x y\right)\left(x^{2}+2 y^{2}-2 x y\right)$ through the Sophie Germain identity. Also, the numerator can be written as

$$
\begin{aligned}
4 x y\left(3 x^{2}+10 x y+6 y^{2}\right) & =12 x^{3} y+40 x^{2} y^{2}+24 x y^{3} \\
& =5 x^{4}+12 x^{3} y+40 x^{2} y^{2}+24 x y^{3}+20 y^{4}-5\left(x^{4}+4 y^{4}\right) \\
& =\left(x^{2}+2 y^{2}-2 x y\right)^{2}+4\left(x^{2}+2 y^{2}+2 x y\right)^{2}-5\left(x^{4}+4 y^{4}\right) .
\end{aligned}
$$

Then, we can decompose the given fraction as

$$
\frac{\left(x^{2}+2 y^{2}-2 x y\right)^{2}+4\left(x^{2}+2 y^{2}+2 x y\right)^{2}}{\left(x^{2}+2 y^{2}+2 x y\right)\left(x^{2}+2 y^{2}-2 x y\right)}-5=\frac{\left(x^{2}+2 y^{2}-2 x y\right)}{\left(x^{2}+2 y^{2}+2 x y\right)}+\frac{4\left(x^{2}+2 y^{2}+2 x y\right)}{\left(x^{2}+2 y^{2}-2 x y\right)}-5 .
$$

By the AM-GM inequality, we have

$$
\frac{\left(x^{2}+2 y^{2}-2 x y\right)}{\left(x^{2}+2 y^{2}+2 x y\right)}+\frac{4\left(x^{2}+2 y^{2}+2 x y\right)}{\left(x^{2}+2 y^{2}-2 x y\right)} \geq 4
$$

so the minimum possible value of the original expression is -1 .
9. Let x, y, z be nonzero numbers, not necessarily real, such that

$$
(x-y)^{2}+(y-z)^{2}+(z-x)^{2}=24 y z
$$

and

$$
\frac{x^{2}}{y z}+\frac{y^{2}}{z x}+\frac{z^{2}}{x y}=3 .
$$

Compute $\frac{x^{2}}{y z}$.
Answer: 5
Solution: Via factoring, we get

$$
\frac{x^{2}}{y z}+\frac{y^{2}}{z x}+\frac{z^{2}}{x y}=3
$$

implies

$$
(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)=0
$$

or

$$
(x+y+z)\left((x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right)=24(x+y+z) y z=0 .
$$

As $y, z \neq 0$, we have $x+y+z=0$ or $x=-y-z$. Then

$$
\frac{x^{2}}{y z}=\frac{(-y-z)^{2}}{y z}=\frac{y^{2}+2 y z+z^{2}}{y z}=\frac{y}{z}+\frac{z}{y}+2 .
$$

Now, substituting $-y-z$ for x in the first equation gives us

$$
\begin{aligned}
(-y-z-y)^{2}+(y-z)^{2}+(z+y+z)^{2} & =4 y^{2}+4 y z+z^{2}+y^{2}-2 y z+z^{2}+y^{2}+4 y z+4 z^{2} \\
& =6 y^{2}+6 z^{2}+6 y z \\
& =24 y z,
\end{aligned}
$$

or

$$
\left(\frac{y}{z}\right)^{2}-3\left(\frac{y}{z}\right)+1=0 .
$$

By the Quadratic Formula, we have

$$
\frac{y}{z}=\frac{3 \pm \sqrt{5}}{2} .
$$

It follows that the answer is

$$
\begin{aligned}
\frac{y}{z}+\frac{z}{y}+2 & =\frac{3-\sqrt{5}}{2}+\frac{3+\sqrt{5}}{2}+2 \\
& =5 .
\end{aligned}
$$

10. Suppose that $p(x), q(x)$ are monic polynomials with nonnegative integer coefficients such that

$$
\frac{1}{5 x} \geq \frac{1}{q(x)}-\frac{1}{p(x)} \geq \frac{1}{3 x^{2}}
$$

for all integers $x \geq 2$. Compute the minimum possible value of $p(1) \cdot q(1)$.

Answer: 3

Solution: Rearranging the right side, we have that $3 x^{2}(p(x)-q(x)) \geq p(x) q(x)$. By degree matching, it must be the case that $\operatorname{deg} p \geq \operatorname{deg} q$ and $\operatorname{deg} q \leq 2$.

Suppose first that $\operatorname{deg} q=1$: that is, $q(x)=x+k$ for some k. Then, we need

$$
\frac{1}{10} \geq \frac{1}{k+2}-\frac{1}{p(2)} \geq \frac{1}{12} .
$$

$p(x)$ must also be linear, as otherwise $5 x$ would eclipse $q(x)$ for large x.
Then, we are looking to minimize $(1+k)(1+\ell)$ such that $\frac{1}{10} \geq \frac{1}{k+2}-\frac{1}{\ell+2} \geq \frac{1}{12}$. Fortunately, in this particular case minimizing $(1+k)(1+\ell)$ turns out to be equivalent to minimizing k. To see this, fix k. As $\ell>k$ increases, there is a contiguous (possibly empty) range of ℓ such that $\frac{1}{10} \geq \frac{1}{k+2}-\frac{1}{\ell+2} \geq \frac{1}{12}$. Furthermore, as k increases, the start point of this range also increases.
So, since $\frac{1}{3}-\frac{1}{4}=\frac{1}{12}$ minimizes k and ℓ, this gives $p(1) q(1)=6$.
Now, suppose that $\operatorname{deg} q=2$ and recall the condition $q(x) p(x) \leq 3 x^{2}(p(x)-q(x))$. If $\operatorname{deg} p=2$ as well, by monicity the right-hand side would have a degree of at most 3 , impossible. So, $\operatorname{deg} p \geq 3$.
Since $p(1), q(1)$ are exactly the sums of coefficients of p, q it must imply that to beat the linear case we need a small number of coefficients.

First, we dispose of cases when $q(x)=x^{2}$. Indeed, note that at $x=2, \frac{1}{4}-\frac{1}{8}>\frac{1}{10}$ so any $p(x)$ with leading coefficient at least x^{3} cannot work. Next, look at $p(x)=x^{k}$. By some casework, we see that $k=3$ leads to no solutions at $x=2$ (as $\frac{1}{5}-\frac{1}{8}<\frac{1}{12}$) and similarly for $k=4$ (as $\frac{1}{6}-\frac{1}{16}>\frac{1}{10}$ and $\left.\frac{1}{7}-\frac{1}{16}<\frac{1}{12}\right)$. However, at $k=5$ we find the solution $q(x)=x^{2}+2 x$. This yields $p(1) q(1)=3$. If $k>5$ then $\frac{1}{p(2)} \leq \frac{1}{64}$ so $q(2)$ must increase. However, increasing $q(2)$ must increase either the x or constant coefficient. Hence, $p(x)=x^{5}$ is optimal.

If both q and p have a non-leading term, then $p(1) q(1) \geq 4$ so our answer must indeed be 3 .
Finally, we will check that $\frac{1}{5 x} \geq \frac{1}{x^{2}+2 x}-\frac{1}{x^{5}} \geq \frac{1}{3 x^{2}}$ to verify the correctness of our solution. Since for all $x \geq 3$ we have $x^{2}+2 x \geq 5 x$, the left side must be satisfied.
For the right side, note that for all $x \geq 2, \frac{1}{x^{5}} \leq \frac{1}{2\left(x^{2}+2 x\right)}$. This follows as $2 x \leq x^{2}$ so $2\left(x^{2}+2 x\right) \leq$ $4 x^{2} \leq x^{4} \leq x^{5}$. Furthermore, for all $x \geq 3,2\left(x^{2}+1\right) \leq 3 x^{2}$ (since rearranging yields $x^{2} \geq 2$). Therefore,

$$
\frac{1}{x^{2}+1}-\frac{1}{x^{3}+1} \geq \frac{1}{2\left(x^{2}+1\right)} \geq \frac{1}{3 x^{2}}
$$

as desired.

