

Time limit: 50 minutes.

Instructions: This test contains 10 short answer questions. All answers must be expressed in simplest form unless specified otherwise.

No calculators.

- 1. Let $A_1A_2...A_{12}$ be a regular dodecagon. Equilateral triangles $\triangle A_1A_2B_1, \triangle A_2A_3B_2,...$, and $\triangle A_{12}A_1B_{12}$ are drawn such that points $B_1, B_2, ...$, and B_{12} lie outside dodecagon $A_1A_2...A_{12}$. Then, equilateral triangles $\triangle A_1A_2C_1, \triangle A_2A_3C_2,...$, and $\triangle A_{12}A_1C_{12}$ are drawn such that points $C_1, C_2, ...$, and C_{12} lie inside dodecagon $A_1A_2...A_{12}$. Compute the ratio of the area of dodecagon $B_1B_2...B_{12}$ to the area of dodecagon $C_1C_2...C_{12}$.
- 2. Triangle $\triangle ABC$ has side lengths AB = 39, BC = 16, and CA = 25. What is the volume of the solid formed by rotating $\triangle ABC$ about line BC?
- 3. Consider an equilateral triangle $\triangle ABC$ of side length 4. In the zeroth iteration, draw a circle Ω_0 tangent to all three sides of the triangle. In the first iteration, draw circles $\Omega_{1A}, \Omega_{1B}, \Omega_{1C}$ such that circle Ω_{1v} is externally tangent to Ω_0 and tangent to the two sides that meet at vertex v (for example, Ω_{1A} would be tangent to Ω_0 and sides AB, AC). In the *n*th iteration, draw circle Ω_{nv} externally tangent to $\Omega_{n-1,v}$ and the two sides that meet at vertex v. Compute the total area of all the drawn circles as the number of iterations approaches infinity.
- 4. Equilateral triangle $\triangle ABC$ is inscribed in circle Ω , which has a radius of 1. Let the midpoint of *BC* be *M*. Line *AM* intersects Ω again at point *D*. Let ω be the circle with diameter *MD*. Compute the radius of the circle that is tangent to *BC* on the same side of *BC* as ω , internally tangent to Ω , and externally tangent to ω .
- 5. Equilateral triangle $\triangle ABC$ has side length 12 and equilateral triangles of side lengths a, b, c < 6 are each cut from a vertex of $\triangle ABC$, leaving behind an equiangular hexagon $A_1A_2B_1B_2C_1C_2$, where A_1 lies on AC, A_2 lies on AB, and the rest of the vertices are similarly defined. Let A_3 be the midpoint of A_1A_2 and define B_3, C_3 similarly. Let the center of $\triangle ABC$ be O. Note that OA_3, OB_3, OC_3 split the hexagon into three pentagons. If the sum of the areas of the equilateral triangles cut out is $18\sqrt{3}$ and the ratio of the areas of the pentagons is 5:6:7, what is the value of abc?
- 6. Let ABC be a triangle and ω_1 its incircle. Let points D and E be on segments AB, AC respectively such that DE is parallel to BC and tangent to ω_1 . Now let ω_2 be the incircle of $\triangle ADE$ and let points F and G be on segments AD, AE respectively such that FG is parallel to DE and tangent to ω_2 . Given that ω_2 is tangent to line AF at point X and line AG at point Y, the radius of ω_1 is 60, and

$$4(AX) = 5(FG) = 4(AY),$$

compute the radius of ω_2 .

- 7. Triangle ABC has AC = 5. D and E are on side BC such that AD and AE trisect $\angle BAC$, with D closer to B and $DE = \frac{3}{2}$, $EC = \frac{5}{2}$. From B and E, altitudes BF and EG are drawn onto side AC. Compute $\frac{CF}{CG} \frac{AF}{AG}$.
- 8. In triangle $\triangle ABC$, point R lies on the perpendicular bisector of AC such that CA bisects $\angle BAR$. Line BR intersects AC at Q, and the circumcircle of $\triangle ARC$ intersects segment AB at $P \neq A$. If AP = 1, PB = 5, and AQ = 2, compute AR.

- 9. Triangle $\triangle ABC$ is isosceles with AC = AB, BC = 1, and $\angle BAC = 36^{\circ}$. Let ω be a circle with center B and radius $r_{\omega} = \frac{P_{ABC}}{4}$, where P_{ABC} denotes the perimeter of $\triangle ABC$. Let ω intersect line AB at P and line BC at Q. Let I_B be the center of the excircle with of $\triangle ABC$ with respect to point B, and let BI_B intersect PQ at S. We draw a tangent line from S to $\odot I_B$ that intersects $\odot I_B$ at point T. Compute the length of ST.
- 10. Let $\triangle ABC$ be a triangle with side lengths AB = 13, BC = 14, and CA = 15. The angle bisector of $\angle BAC$, the angle bisector of $\angle ABC$, and the angle bisector of $\angle ACB$ intersect the circumcircle of $\triangle ABC$ again at points D, E and F, respectively. Compute the area of hexagon AFBDCE.