Time limit: 50 minutes.
Instructions: This test contains 10 short answer questions. All answers must be expressed in simplest form unless specified otherwise.
No calculators.

1. Let $A_{1} A_{2} \ldots A_{12}$ be a regular dodecagon. Equilateral triangles $\triangle A_{1} A_{2} B_{1}, \triangle A_{2} A_{3} B_{2}, \ldots$, and $\triangle A_{12} A_{1} B_{12}$ are drawn such that points B_{1}, B_{2}, \ldots, and B_{12} lie outside dodecagon $A_{1} A_{2} \ldots A_{12}$. Then, equilateral triangles $\triangle A_{1} A_{2} C_{1}, \triangle A_{2} A_{3} C_{2}, \ldots$, and $\triangle A_{12} A_{1} C_{12}$ are drawn such that points C_{1}, C_{2}, \ldots, and C_{12} lie inside dodecagon $A_{1} A_{2} \ldots A_{12}$. Compute the ratio of the area of dodecagon $B_{1} B_{2} \ldots B_{12}$ to the area of dodecagon $C_{1} C_{2} \ldots C_{12}$.
2. Triangle $\triangle A B C$ has side lengths $A B=39, B C=16$, and $C A=25$. What is the volume of the solid formed by rotating $\triangle A B C$ about line $B C$?
3. Consider an equilateral triangle $\triangle A B C$ of side length 4 . In the zeroth iteration, draw a circle Ω_{0} tangent to all three sides of the triangle. In the first iteration, draw circles $\Omega_{1 A}, \Omega_{1 B}, \Omega_{1 C}$ such that circle $\Omega_{1 v}$ is externally tangent to Ω_{0} and tangent to the two sides that meet at vertex v (for example, $\Omega_{1 A}$ would be tangent to Ω_{0} and sides $A B, A C$). In the nth iteration, draw circle $\Omega_{n v}$ externally tangent to $\Omega_{n-1, v}$ and the two sides that meet at vertex v. Compute the total area of all the drawn circles as the number of iterations approaches infinity.
4. Equilateral triangle $\triangle A B C$ is inscribed in circle Ω, which has a radius of 1 . Let the midpoint of $B C$ be M. Line $A M$ intersects Ω again at point D. Let ω be the circle with diameter $M D$. Compute the radius of the circle that is tangent to $B C$ on the same side of $B C$ as ω, internally tangent to Ω, and externally tangent to ω.
5. Equilateral triangle $\triangle A B C$ has side length 12 and equilateral triangles of side lengths $a, b, c<6$ are each cut from a vertex of $\triangle A B C$, leaving behind an equiangular hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$, where A_{1} lies on $A C, A_{2}$ lies on $A B$, and the rest of the vertices are similarly defined. Let A_{3} be the midpoint of $A_{1} A_{2}$ and define B_{3}, C_{3} similarly. Let the center of $\triangle A B C$ be O. Note that $O A_{3}, O B_{3}, O C_{3}$ split the hexagon into three pentagons. If the sum of the areas of the equilateral triangles cut out is $18 \sqrt{3}$ and the ratio of the areas of the pentagons is $5: 6: 7$, what is the value of $a b c$?
6. Let $A B C$ be a triangle and ω_{1} its incircle. Let points D and E be on segments $A B, A C$ respectively such that $D E$ is parallel to $B C$ and tangent to ω_{1}. Now let ω_{2} be the incircle of $\triangle A D E$ and let points F and G be on segments $A D, A E$ respectively such that $F G$ is parallel to $D E$ and tangent to ω_{2}. Given that ω_{2} is tangent to line $A F$ at point X and line $A G$ at point Y, the radius of ω_{1} is 60 , and

$$
4(A X)=5(F G)=4(A Y)
$$

compute the radius of ω_{2}.
7. Triangle $A B C$ has $A C=5 . D$ and E are on side $B C$ such that $A D$ and $A E$ trisect $\angle B A C$, with D closer to B and $D E=\frac{3}{2}, E C=\frac{5}{2}$. From B and E, altitudes $B F$ and $E G$ are drawn onto side $A C$. Compute $\frac{C F}{C G}-\frac{A F}{A G}$.
8. In triangle $\triangle A B C$, point R lies on the perpendicular bisector of $A C$ such that $C A$ bisects $\angle B A R$. Line $B R$ intersects $A C$ at Q, and the circumcircle of $\triangle A R C$ intersects segment $A B$ at $P \neq A$. If $A P=1, P B=5$, and $A Q=2$, compute $A R$.
9. Triangle $\triangle A B C$ is isosceles with $A C=A B, B C=1$, and $\angle B A C=36^{\circ}$. Let ω be a circle with center B and radius $r_{\omega}=\frac{P_{A B C}}{4}$, where $P_{A B C}$ denotes the perimeter of $\triangle A B C$. Let ω intersect line $A B$ at P and line $B C$ at Q. Let I_{B} be the center of the excircle with of $\triangle A B C$ with respect to point B, and let $B I_{B}$ intersect $P Q$ at S. We draw a tangent line from S to $\odot I_{B}$ that intersects $\odot I_{B}$ at point T. Compute the length of $S T$.
10. Let $\triangle A B C$ be a triangle with side lengths $A B=13, B C=14$, and $C A=15$. The angle bisector of $\angle B A C$, the angle bisector of $\angle A B C$, and the angle bisector of $\angle A C B$ intersect the circumcircle of $\triangle A B C$ again at points D, E and F, respectively. Compute the area of hexagon $A F B D C E$.

