1. Let $A_{1} A_{2} \ldots A_{12}$ be a regular dodecagon. Equilateral triangles $\triangle A_{1} A_{2} B_{1}, \triangle A_{2} A_{3} B_{2}, \ldots$, and $\triangle A_{12} A_{1} B_{12}$ are drawn such that points B_{1}, B_{2}, \ldots, and B_{12} lie outside dodecagon $A_{1} A_{2} \ldots A_{12}$. Then, equilateral triangles $\triangle A_{1} A_{2} C_{1}, \triangle A_{2} A_{3} C_{2}, \ldots$, and $\triangle A_{12} A_{1} C_{12}$ are drawn such that points C_{1}, C_{2}, \ldots, and C_{12} lie inside dodecagon $A_{1} A_{2} \ldots A_{12}$. Compute the ratio of the area of dodecagon $B_{1} B_{2} \ldots B_{12}$ to the area of dodecagon $C_{1} C_{2} \ldots C_{12}$.
Answer: $4+2 \sqrt{3}$
Solution: Each interior angle of a regular dodecagon has measure $\frac{10 \cdot 180^{\circ}}{12}=150^{\circ}$. Suppose the side length of $A_{1} A_{2} \ldots A_{12}$ is 1 .
We can compute the side length of $B_{1} B_{2} \ldots B_{12}$ by finding $B_{1} B_{2}$. We have $\angle B_{1} A_{2} B_{2}=360^{\circ}-$ $150^{\circ}-60^{\circ}-60^{\circ}=90^{\circ}$. Then, $\triangle B_{1} A_{2} B_{2}$ is a 45-45-90 triangle, which gives us $B_{1} B_{2}=\sqrt{2}$.
We can compute the side length of $C_{1} C_{2} \ldots C_{12}$ by finding $C_{1} C_{2}$. We have $\angle C_{1} A_{2} C_{2}=$ $150^{\circ}-60^{\circ}-60^{\circ}=30^{\circ}$. Then, using the Law of Cosines in $\triangle C_{1} A_{2} C_{2}$ gives us $C_{1} C_{2}=$ $\sqrt{1+1-2 \cos \left(30^{\circ}\right)}=\frac{\sqrt{3}-1}{\sqrt{2}}$.
The ratio of the area of $B_{1} B_{2} \ldots B_{12}$ to the area of $C_{1} C_{2} \ldots C_{12}$ is then $\left(\frac{\sqrt{2}}{\left.\frac{\sqrt{3}-1}{\sqrt{2}}\right)^{2}=4+2 \sqrt{3}}\right.$.
2. Triangle $\triangle A B C$ has side lengths $A B=39, B C=16$, and $C A=25$. What is the volume of the solid formed by rotating $\triangle A B C$ about line $B C$?

Answer: 1200 π

Solution: Let the foot of the perpendicular from A to line $B C$ be D. The volume we want to find can be calculated by subtracting the volume of the cone formed by rotating $\triangle A C D$ from the cone formed by rotating $\triangle A B D$. Let $C D=x$ and $A D=y$. By the Pythagorean theorem, we have

$$
(x+16)^{2}+y^{2}=39^{2}
$$

and

$$
x^{2}+y^{2}=25^{2} .
$$

Subtracting the second equation from the first and solving for x gives $x=\frac{39^{2}-25^{2}-16^{2}}{2 \cdot 16}=20$. Then, $y=\sqrt{25^{2}-20^{2}}=15$. Then, the volume we want is $\frac{1}{3}\left(15^{2} \pi\right)(B D-C D)=\frac{1}{3}\left(15^{2} \pi\right)(16)=$ 1200π.
3. Consider an equilateral triangle $\triangle A B C$ of side length 4 . In the zeroth iteration, draw a circle Ω_{0} tangent to all three sides of the triangle. In the first iteration, draw circles $\Omega_{1 A}, \Omega_{1 B}, \Omega_{1 C}$ such that circle $\Omega_{1 v}$ is externally tangent to Ω_{0} and tangent to the two sides that meet at vertex v (for example, $\Omega_{1 A}$ would be tangent to Ω_{0} and sides $A B, A C$). In the nth iteration, draw circle $\Omega_{n v}$ externally tangent to $\Omega_{n-1, v}$ and the two sides that meet at vertex v. Compute the total area of all the drawn circles as the number of iterations approaches infinity.
Answer: $\frac{11 \pi}{6}$
Solution: Instead of considering all the circles at once, we start by only worrying about circles that are tangent to sides $A B$ and $A C$, so this would be $\Omega_{0}, \Omega_{1 A}, \Omega_{2 A}, \ldots, \Omega_{i A}, \ldots$. Note that by symmetry, if we can find the total area of these circles, we can simply multiply by three and then subtract by twice the area of Ω_{0} (it's counted three times if we just multiply by 3) to get the desired answer. The figure under consideration is:

The radius of Ω_{0} is $\frac{2 \sqrt{3}}{3}$ since connecting the center of Ω_{0} to the midpoint of any side of the equilateral triangle forms a $30-60-90$ triangle (green) with a longer leg of length $4 / 2=2$. Next, we can draw the line tangent to Ω_{0} and $\Omega_{1 A}$ at their intersection (red) to form a smaller version of the exact same shape. The ratio between these two iterations can be found by taking the ratio of the heights of their circumscribed triangles, and is

$$
\frac{2 \sqrt{3}-\frac{4 \sqrt{3}}{3}}{2 \sqrt{3}}=\frac{1}{3} .
$$

Sol one: Algebra

Note that taking away Ω_{0} from the area of all the circles is exactly the same as if we scaled down the area by $\left(\frac{1}{3}\right)^{2}$. Letting πA be the total area, we then have the relation

$$
\pi A-\frac{4 \pi}{3}=\frac{\pi}{9} A .
$$

Solving this gives

$$
A=\frac{3}{2} .
$$

The final area is

$$
3 \cdot \frac{3 \pi}{2}-\frac{8 \pi}{3}=\frac{11 \pi}{6} .
$$

Sol two: Direct calculation

The area of Ω_{0} is $\frac{4 \pi}{3}$. The sum of the areas of the circles tangent to sides 1 and 2 , minus the area of Ω_{0}, can be computed as $\sum_{i=1}^{\infty}\left(\frac{1}{9}\right)^{i} \frac{4 \pi}{3}=\frac{4 \pi}{3} \sum_{i=1}^{\infty}\left(\frac{1}{9}\right)^{i}=\frac{4 \pi}{3} \cdot \frac{1}{8}=\frac{\pi}{6}$. The total area is then $3 \cdot \frac{\pi}{6}+\frac{4 \pi}{3}=\frac{11 \pi}{6}$.
4. Equilateral triangle $\triangle A B C$ is inscribed in circle Ω, which has a radius of 1 . Let the midpoint of $B C$ be M. Line $A M$ intersects Ω again at point D. Let ω be the circle with diameter $M D$. Compute the radius of the circle that is tangent to $B C$ on the same side of $B C$ as ω, internally tangent to Ω, and externally tangent to ω.
Answer: $\frac{3}{16}$
Solution: Denote the circle whose radius we want to compute as ω^{\prime}. Let the center of Ω be O_{1}, the center of ω be O_{2}, and the center of ω^{\prime} be O_{3}. Since $O_{1} B M$ is a $30-60-90$ triangle, we have $O_{1} M=\frac{1}{2}$. Then we see that the diameter of ω is $1-\frac{1}{2}=\frac{1}{2}$, so the radius of ω is $\frac{1}{4}$. Let the radius of ω^{\prime} be r. Let the foot of the perpendicular from O_{3} to $M D$ be point E. We have by the Pythagorean theorem

$$
\begin{aligned}
O_{3} E & =\sqrt{O_{3} O_{2}^{2}-O_{2} E^{2}} \\
& =\sqrt{\left(\frac{1}{4}+r\right)^{2}-\left(\frac{1}{4}-r\right)^{2}} \\
& =\sqrt{r} .
\end{aligned}
$$

Then, by the Pythagorean theorem in $\triangle O_{1} O_{3} E$ we have

$$
O_{3} E^{2}+O_{1} E^{2}=O_{1} O_{3}^{2},
$$

which becomes

$$
(\sqrt{r})^{2}+\left(\frac{1}{2}+r\right)^{2}=(1-r)^{2} .
$$

Solving for r gives us $r=\frac{3}{16}$.
5. Equilateral triangle $\triangle A B C$ has side length 12 and equilateral triangles of side lengths $a, b, c<6$ are each cut from a vertex of $\triangle A B C$, leaving behind an equiangular hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$, where A_{1} lies on $A C, A_{2}$ lies on $A B$, and the rest of the vertices are similarly defined. Let A_{3} be the midpoint of $A_{1} A_{2}$ and define B_{3}, C_{3} similarly. Let the center of $\triangle A B C$ be O. Note that $O A_{3}, O B_{3}, O C_{3}$ split the hexagon into three pentagons. If the sum of the areas of the equilateral triangles cut out is $18 \sqrt{3}$ and the ratio of the areas of the pentagons is $5: 6: 7$, what is the value of $a b c$?

Answer: $64 \sqrt{3}$

Solution: For the pentagon determined by $O A_{3}$ and $O B_{3}$, we can split it into $\triangle O A_{3} A_{2}, \triangle O A_{2} B_{1}, \triangle O B_{1} B_{3}$ and determine its area as

$$
\frac{1}{2} \cdot \frac{a}{2} \cdot\left(4 \sqrt{3}-\frac{a \sqrt{3}}{2}\right)+\frac{1}{2} \cdot 2 \sqrt{3} \cdot(12-a-b)+\frac{1}{2} \cdot \frac{b}{2} \cdot\left(4 \sqrt{3}-\frac{b \sqrt{3}}{2}\right)=\frac{\sqrt{3}}{8}\left(96-a^{2}-b^{2}\right) .
$$

Similarly, the areas of the other pentagons are $\frac{\sqrt{3}}{8}\left(96-b^{2}-c^{2}\right)$ and $\frac{\sqrt{3}}{8}\left(96-c^{2}-a^{2}\right)$. From the fact that the sum of the areas of the equilateral triangles cut out is $18 \sqrt{3}$, we find that $a^{2}+b^{2}+c^{2}=\frac{4}{\sqrt{3}} \cdot 18 \sqrt{3}=72$. Then,

$$
96-a^{2}-b^{2}+96-b^{2}-c^{2}+96-c^{2}-a^{2}=288-2\left(a^{2}+b^{2}+c^{2}\right)=288-144=144 .
$$

Dividing 144 into the ratio 5: 6:7 gives 40, 48, 56 as values for $96-a^{2}-b^{2}, 96-b^{2}-c^{2}, 96-c^{2}-a^{2}$. Then, we have $56,48,40$ for the values of $a^{2}+b^{2}, b^{2}+c^{2}, c^{2}+a^{2}$, which we can use along with $a^{2}+b^{2}+c^{2}=72$ to find that a, b, c are $4,2 \sqrt{6}, 4 \sqrt{2}$ (in any order). Then, $a b c=4 \cdot 2 \sqrt{6} \cdot 4 \sqrt{2}=$ $64 \sqrt{3}$.
6. Let $A B C$ be a triangle and ω_{1} its incircle. Let points D and E be on segments $A B, A C$ respectively such that $D E$ is parallel to $B C$ and tangent to ω_{1}. Now let ω_{2} be the incircle of $\triangle A D E$ and let points F and G be on segments $A D, A E$ respectively such that $F G$ is parallel to $D E$ and tangent to ω_{2}. Given that ω_{2} is tangent to line $A F$ at point X and line $A G$ at point Y, the radius of ω_{1} is 60 , and

$$
4(A X)=5(F G)=4(A Y),
$$

compute the radius of ω_{2}.
Answer: 12
Solution: Let s be the semiperimeter of $\triangle A F G, r$ the inradius of $\triangle A F G$, and a the length of $F G$. It is well-known that $A X=A Y=s$ since ω_{2} is an excircle of $\triangle A F G$. Then, if we let $s=k a$, from the problem statement we have $k=\frac{5}{4}$. The radius of ω_{2} is $\frac{[A F G]}{s-a}$ using the formula for the radius of an excircle. We have

$$
\begin{aligned}
\frac{[A F G]}{s-a} & =\frac{r s}{s-a} \\
& =\frac{r k a}{k a-a} \\
& =\left(\frac{k}{k-1}\right) r .
\end{aligned}
$$

Since ω_{2} is the incircle of $\triangle A D E$, we see that $\triangle A F G \sim \triangle A D E$ with ratio $\frac{k}{k-1}$. A similar calculation gives us that the radius of ω_{1} is $\left(\frac{k}{k-1}\right)^{2} r$. Then, the answer is

$$
\frac{60}{\frac{k}{k-1}}=\frac{60}{5}=12 \text {. }
$$

7. Triangle $A B C$ has $A C=5 . D$ and E are on side $B C$ such that $A D$ and $A E$ trisect $\angle B A C$, with D closer to B and $D E=\frac{3}{2}, E C=\frac{5}{2}$. From B and E, altitudes $B F$ and $E G$ are drawn onto side $A C$. Compute $\frac{C F}{C G}-\frac{A F}{A G}$.

Answer: 2

Solution: Let $\angle B A C=3 a$ and $A B=x$. Observe first that, by the angle bisector theorem, $\frac{A D}{A C}=\frac{D E}{E C}$, so $A D=A C \cdot \frac{D E}{E C}=5 \cdot \frac{3}{5}=3$. Then, $\triangle A D C$ is a 3-4-5 triangle, so $\angle A D C=90^{\circ}$. Since $A D$ bisects $\angle B A E$ and is perpendicular to $B E$, we have that $\triangle B A E$ is isosceles, which gives us $B D=\frac{3}{2}$ and $A E=A B=x$.
Now we know that $B F=x \sin (3 a), A F=x \cos (3 a), E G=x \sin (a)$, and $A G=x \cos (a)$. Since $B F$ is parallel to $E G, \frac{C F}{C G}=\frac{B F}{E G}=\frac{x \sin (3 a)}{x \sin (a)}=3-4 \sin ^{2} a$, using the triple angle formula. Similarly, $\frac{A F}{A G}=\frac{x \cos (3 a)}{x \cos (a)}=4 \cos ^{2} a-3$.
Then $\frac{C F}{C G}-\frac{A F}{A G}=3-4 \sin ^{2} a-4 \cos ^{2} a+3=6-4=2$.
8. In triangle $\triangle A B C$, point R lies on the perpendicular bisector of $A C$ such that $C A$ bisects $\angle B A R$. Line $B R$ intersects $A C$ at Q, and the circumcircle of $\triangle A R C$ intersects segment $A B$ at $P \neq A$. If $A P=1, P B=5$, and $A Q=2$, compute $A R$.
Answer: $\frac{3+3 \sqrt{129}}{16}$
Solution: Since R lies on the perpendicular bisector,

$$
\angle A C R=\angle R A C=\angle C A B
$$

and $A B$ is parallel to $R C$. Thus, $\triangle A Q B \sim \triangle C Q R$ and

$$
Q C=\frac{R C}{A B} \cdot A Q=\frac{R C}{3} .
$$

Let $A R=R C=x$. Then as $A B$ is parallel to $R C$ and $A R C P$ is cyclic,

$$
P C=A R=x
$$

and

$$
P R=A C=2+\frac{x}{3} .
$$

It follows from Ptolemy's theorem that

$$
(A P)(R C)+(A R)(P C)=(A C)(P R),
$$

which gives us

$$
\left(2+\frac{x}{3}\right)^{2}=x+x^{2}
$$

which comes out to

$$
8 x^{2}-3 x-36=0 .
$$

Using the quadratic formula, the only positive solution is

$$
x=\frac{3+3 \sqrt{129}}{16}
$$

9. Triangle $\triangle A B C$ is isosceles with $A C=A B, B C=1$, and $\angle B A C=36^{\circ}$. Let ω be a circle with center B and radius $r_{\omega}=\frac{P_{A B C}}{4}$, where $P_{A B C}$ denotes the perimeter of $\triangle A B C$. Let ω intersect line $A B$ at P and line $B C$ at Q. Let I_{B} be the center of the excircle with of $\triangle A B C$
with respect to point B, and let $B I_{B}$ intersect $P Q$ at S. We draw a tangent line from S to $\odot I_{B}$ that intersects $\odot I_{B}$ at point T. Compute the length of $S T$.
Answer: $\frac{7+3 \sqrt{5}}{16}$
Solution: First note that if the excircle touches lines $B A, B C$ at points E, F respectively, then $B E=B F=\frac{P_{A B C}}{2}$, and, hence, P and Q are midpoints. This means that P and Q have equal power with respect to $\odot I_{B}$ and B (if we consider B to be a circle with zero radius). We therefore get that $P Q$ is the radical axis of $\odot I_{B}$ and B, and every point on $P Q$ has equal power with respect to $\odot I_{B}$ and B. This implies that $S T=S B$, and it is therefore sufficient to find $S B$.
We now need to find $P_{A B C}$. We recall that $\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}$, and hence

$$
A C=\frac{1}{2 \sin 18^{\circ}}=\frac{2}{\sqrt{5}-1}=\frac{\sqrt{5}+1}{2}
$$

This gives us $P_{A B C}=\sqrt{5}+2$, and by extension $P B=\frac{P_{A B C}}{4}=\frac{\sqrt{5}+2}{4}$. We now recall $\sin 54^{\circ}=$ $\frac{\sqrt{5}+1}{4}$, and this gives us the final answer

$$
S B=\frac{\sqrt{5}+2}{4} \cdot \frac{\sqrt{5}+1}{4}=\frac{7+3 \sqrt{5}}{16}=S T
$$

10. Let $\triangle A B C$ be a triangle with side lengths $A B=13, B C=14$, and $C A=15$. The angle bisector of $\angle B A C$, the angle bisector of $\angle A B C$, and the angle bisector of $\angle A C B$ intersect the circumcircle of $\triangle A B C$ again at points D, E and F, respectively. Compute the area of hexagon $A F B D C E$.
Answer: $\frac{1365}{8}$
Solution: Let the incenter of $\triangle A B C$ be I. By the Incenter/Excenter Lemma, D is the center of $(I B C)$, where $(A B C)$ denotes the circle circumscribing $\triangle A B C$. Similarly, E is the center of $(I A C)$ and F is the center of $(I A B)$. Denote the excenter opposite vertex A as I_{A}, and define I_{B}, I_{C} similarly. Also by the lemma, we can angle chase to find that $\triangle A B C$ is the orthic triangle of $\triangle I_{A} I_{B} I_{C}$.
Note that $(A B C)$ is the nine-point circle of $\triangle I_{A} I_{B} I_{C}$. Let the radius of $\left(I_{A} I_{B} I_{C}\right)$ be R^{\prime} and denote $\angle B A C=\angle A, \angle A B C=\angle B, \angle B C A=\angle C$. By Law of Sines on $\triangle I I_{A} I_{B}$, we have $\frac{I I_{A}}{\sin \angle I I_{B} I_{A}}=\frac{I_{A} I_{B}}{\sin \angle I_{A} I I_{B}}$, which gives us $\frac{I I_{A}}{\sin (A / 2)}=\frac{I_{A} I_{B}}{\sin \left(180^{\circ}-\angle I_{B} I_{C} I_{A}\right)}=\frac{I_{A} I_{B}}{\sin \angle I_{B} I_{C} I_{A}}=2 R^{\prime}$. Then, $I I_{A}=2 R^{\prime} \sin (A / 2)$. Now, note that there is a homothety from $\left(I_{A} I_{B} I_{C}\right)$ to its nine-point circle. Let the radius of $(A B C)$ be R. Then, $I I_{A}=4 R \sin (A / 2)$. Similarly, $I I_{B}=4 R \sin (B / 2)$ and $I I_{C}=4 R \sin (C / 2)$.

Then, the area of $A F B D C E$ is

$$
\begin{aligned}
{[A B C]+[D B C]+[E A C]+[F A B]=} & 84+\frac{1}{2}\left(I I_{A} / 2\right)^{2} \sin \left(180^{\circ}-A\right) \\
& +\frac{1}{2}\left(I I_{B} / 2\right)^{2} \sin \left(180^{\circ}-B\right)+\frac{1}{2}\left(I I_{C} / 2\right)^{2} \sin \left(180^{\circ}-C\right) \\
= & 84+2 R^{2} \sin ^{2}(A / 2) \sin A+2 R^{2} \sin ^{2}(B / 2) \sin B+2 R^{2} \sin ^{2}(C / 2) \sin C \\
= & 84+R^{2}(1-\cos A) \sin A+R^{2}(1-\cos B) \sin B+R^{2}(1-\cos C) \sin C
\end{aligned}
$$

where the area $[A B C]$ can be computed by noting that $\triangle A B C$ can be formed from a 5-12-13 and $9-12-15$ triangle. This also allows us to find with Law of Sines that $\sin A=\frac{56}{65}, \cos A=$
$\frac{33}{65}, \sin B=\frac{12}{13}, \cos B=\frac{5}{13}, \sin C=\frac{4}{5}$, and $\cos C=\frac{3}{5}$. Also, $R=\frac{13 \cdot 14 \cdot 15}{4 \cdot 84}=\frac{65}{8}$ using the formula for the length of the circumradius of a triangle. Finally, we have

$$
\begin{aligned}
{[A F B D C E] } & =84+(65 / 8)^{2} \cdot((1-33 / 65) \cdot 56 / 65+(1-3 / 5) \cdot 4 / 5+(1-5 / 13) \cdot 12 / 13) \\
& =\frac{1365}{8} .
\end{aligned}
$$

